首页> 外文OA文献 >Divergence based Robust Estimation of the Tail Index through An Exponential Regression Model
【2h】

Divergence based Robust Estimation of the Tail Index through An Exponential Regression Model

机译:基于散度的尾部指数的稳健估计   指数回归模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extreme value theory is very popular in applied sciences includingFinance, economics, hydrology and many other disciplines. In univariate extremevalue theory, we model the data by a suitable distribution from the generalmax-domain of attraction (MAD) characterized by its tail index; there are threebroad classes of tails -- the Pareto type, the Weibull type and the Gumbeltype. The simplest and most common estimator of the tail index is the Hillestimator that works only for Pareto type tails and has a high bias; it is alsohighly non-robust in presence of outliers with respect to the assumed model.There have been some recent attempts to produce asymptotically unbiased orrobust alternative to the Hill estimator; however all the robust alternativeswork for any one type of tail. This paper proposes a new general estimator ofthe tail index that is both robust and has smaller bias under all the threetail types compared to the existing robust estimators. This essentiallyproduces a robust generalization of the estimator proposed by Matthys andBeirlant (2003) under the same model approximation through a suitableexponential regression framework using the density power divergence. Therobustness properties of the estimator are derived in the paper along with anextensive simulation study. A method for bias correction is also proposed withapplication to some real data examples.
机译:极值理论在应用科学中非常流行,包括金融,经济学,水文学和许多其他学科。在单变量极值理论中,我们通过以其尾部索引为特征的一般最大吸引域(MAD)的适当分布来对数据进行建模。尾巴分为三大类-帕累托型,威布尔型和Gumbel型。尾部索引最简单,最常见的估计器是Hillestimator,它仅适用于Pareto型尾部,并且具有较高的偏差。相对于假设的模型,在存在离群值的情况下,它也是极不稳健的。最近有一些尝试来产生渐近无偏或稳健的替代方法来代替希尔估计。但是,对于任何一种类型的尾巴,所有可靠的替代方案都可以工作。本文提出了一种新的尾部索引通用估计器,与现有的鲁棒估计器相比,该估计器既健壮又在所有三个尾部类型下具有较小的偏差。通过使用密度幂散度的合适指数回归框架,在相同的模型近似下,这本质上产生了Matthys和Beirlant(2003)提出的估计的鲁棒概括。本文通过大量的仿真研究得出了估计器的鲁棒性。还提出了一种用于偏差校正的方法,并将其应用于一些实际数据示例。

著录项

  • 作者

    Ghosh, Abhik;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号